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Particle Motion Algorithm for Arbitrary Gyro-Frequencies 
 

Jean-Luc Cambier 
AFRL, Edwards AFB, CA 93524 

 
Oleg Batishchev 

MIT – Space Systems Laboratory, Cambridge, MA 02139 
 
 

Abstract 

The transport of particles in a Particle-In-Cell (PIC) method is traditionally handled by a 
staggered algorithm, second-order accurate in time, originally developed by Boris [1-2]. The 
scheme is very efficient and although it is stable for time steps large compared to the cyclotron 
period (“gyro-period”), it ceases to be accurate in that case. In cases of strong applied magnetic 
field, this can impose an impractical time-step restriction. An alternative approach is to average 
over the orbital motion and consider only that of the guiding-center; this has led to so-called 
gyrokinetic simulations [3]. However, that approach can also lead to some inaccuracies, due to 
the loss of information regarding the phase of the orbital motion. Furthermore, it may also be 
desirable to have an algorithm that is not staggered in time, in order to guarantee exact 
conservation of total energy at all times. In this paper, we present an algorithm that solves the 
non-relativistic equation of motion exactly, and can yield exact conservation of energy for large 
time steps (compared to gyroperid). The algorithm accuracy is demonstrated and compared with 
the Boris scheme. These preliminary results are valid for the homogenous case only, and 
extension to spatially-varying fields should be considered next. 
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1.  Introduction 

We consider the problem of solving the non-relativistic dynamical equation for charged particles 
in arbitrary electric and magnetic fields: 
  )( BEm

rrr
&r ×+= vqv  (1) 

This is the basic transport process in Particle-In-Cell (PIC) codes, which is usually solved using 
the Boris algorithm [1], defined in Appendix A. The Boris algorithm is a computationally 
efficient (i.e. uses a minimum number of operations) algorithm, second-order accurate in time. 
Since it is a leap-frog integrator, it is also usually described as a symplectic algorithm, i.e. which 
conserves a discrete analog of the Hamiltonian up to second-order accuracy. This is a critically 
important property for PIC simulations, which usually do not have conservation properties 
embedded in the mathematical formulation as in continuum models, such as finite-volume or 
finite-difference schemes. However, it is important to exercise some caution when speaking of 
energy conservation in the Boris scheme; as a leap-frog algorithm, it uses position and velocity 
staggered in time, the kinetic and potential energies are not computed at the same time. After 
advancing the particle, the kinetic energy can be evaluated from the velocity field at time 

)2/1( +n , while the potential energy can be obtained exactly from the particle position at time 
)1( +n . Thus, the kinetic and potential energies are not strictly conserved at the same time.  

 

 
In the leap-frog algorithm, the fields are used at the mid-point for advancing the velocity, i.e. 
fields evaluated at time )(n  are needed for updating the velocity from )2/1( −nvr  to )2/1( +nvr . In an 
electrostatic simulation, the electric field can be obtained from solving Poisson’s equation: 

 )(
0

2
eii nnZe

−=∇
ε

φ
r

 (2a) 

and )()( nnE φ∇−=
rr

 (2b) 
In (2a), the particle density at a given location (grid-point) is obtained as the statistical average of 
the contribution of neighboring particle; this “scatter” operation maps the particles onto the grid, 
and various interpolation schemes can be used for this operation. We point out that this mapping 

)(nrr

)(nE
r

)(nB
r

)1( +nE
r

)1( +nB
r

)2/1( −nvr  

tΔ

tΔ

Figure 1: Schematic of leap-frog Boris algorithm. 

)2/1( +nvr  )1( +nrr
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uses the particle locations at time level )(n , and therefore the electro-static potential (and electric 
field) are naturally synchronized with the particle positions. In electro-static simulations the 
magnetic field is constant and there is no concern over its synchronization. In electro-magnetic 
simulations, however, both fields are advanced in time and the procedure must be consistent with 
the Maxwell equations: 
 pE ρε ~

0 −=⋅∇
rr

 (3a) 

 pjB
t
E r

rrr

+
×∇

−=
∂
∂

0
0 μ

ε  (3b) 

 E
t
B rr
r

×∇−=
∂
∂  (3c) 

 0=⋅∇ B
rr

 (3d) 
Equation (3a), where pρ

~  is the charge density from the particles, is simply Poisson’s equation 

(2a); in (3b), pj
r

 is the current density from the particles, and is obtained by a similar mapping of 
the particle velocities onto grid points. The Maxwell equations are naturally synchronized to 
second-order accuracy for )()( , nn Er

rr  and )2/1()2/1( , ++ nn B
rrv . However the leap-frog algorithm for 

particle transport is of the form ),,( )()()2/1()2/1( nnnn BEf
rrrr −+ = vv , and one needs to interpolate in 

time one of the fields for the particle push, i.e. B
r

. Note that the leap-frog algorithm of Figure 1 is 
not the unique solution: one could just as well decide to choose the fields )()( , nn Br

rr  and 
)2/1()2/1( , ++ nn E

rrv  or other combinations and rely on the time-interpolation of another field (matter 
or particle) to re-establish second-order time accuracy. Higher-order schemes can of course be 
obtained with iterative methods. 
 

 
The Boris algorithm is stable at high values of the magnetic field, i.e. when 1>>Δtcω , although 
accuracy is lost for large time steps. Practically speaking, the time step in PIC simulations using 
this algorithm is restricted such that 1<<Δtcω ; this makes the scheme highly inefficient in cases 
of strongly magnetized plasmas. One could consider an alternative approach in that case, where 
only the motion of the guiding center is modeled; the rotation around the field line is not tracked, 
but averaged over several orbits. This “drift dynamics” approach is valid when the gyro-radius 

xcr Δ<< , the characteristic cell-size; however, significant errors can be introduced even when 

xcr Δ≤ . Since the phase of the gyro-motion is not known in this approximation, the particle 
position is effectively randomized on a scale comparable to the cell size (see Figure 2). This can 
lead to errors at the crossing into different cells or boundaries, and errors when the field gradients 
on the scale of a cell size are non-negligible. Therefore, it is worth investigating the construction 

xcr Δ<<  xcr Δ≤  

yδ  yδ  

Figure 2: Potential positional error of drift dynamics versus gyro-radius 
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of an accurate particle-push algorithm that is more efficient at high cyclotron frequency, yet 
remains accurate and conserves energy to a high level of accuracy. This is the object of the 
following study.  
 
2.  Exact Solution 

We consider here the case of constant and uniform fields. This considerably simplifies the 
analysis and allows us to obtain an exact analytical solution to the non-relativistic equations of 
motion. The constant field approximation is valid when the time-variation of the fields is 
neglected during the time-step (i.e. first-order time-accuracy of the field evolution); the extension 
to higher-order time-dependency and non-uniform fields will be examined in the future. We will 
also be performing a transformation to the reference frame aligned with the magnetic field. Let us 
first define the laboratory frame (L) by the italicized letters ( zyx ˆ,ˆ,ˆ ) and a rotated coordinate 

frame by )ˆ,ˆ,ˆ( ζηξ  such that the unit vector ζ̂  is aligned with the magnetic field, i.e. b̂ˆ ≡ζ . 

 
The rotation operators between the two reference frames are given by: 
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where we have used the condensed notation of )cos(ϕϕ =c , )sin(θθ =s , etc. Once the rotation 
into the aligned frame is performed and no confusion is possible, we can use the script letters 
( zy,x, ) to denote the components in that frame, i.e. )ˆ,ˆ,ˆ()ẑ,ŷ,x̂( ζηξ≡ . We will also denote 
vectors in that frame by bold-face type, i.e.: E

r
⊗= RE ˆ . 

 
In this rotated frame, the equation of motion (1) can be expressed by: 

θ 

ϕ 

ξ̂  

η̂  

ζ̂

x̂  

ŷ  

ẑ

Figure 3: Reference frame transformation: ζ̂  aligned with B
r
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 (5) 

In this frame, the magnetic field has a component only in the ẑ  direction, and therefore B≡zB , 
the magnitude of the magnetic field. We can define a normalized electric acceleration field 

mq /Ea =  and the cyclotron frequency mqB /=ω , which is a signed quantity. The solution for 
the ẑ -component of the velocity is trivial and can be ignored for the moment. The system (5) can 
be reduced, for the transverse components, to: 

 v0
0av ⋅⎟

⎠
⎞⎜

⎝
⎛
−+= ω

ω&  (6) 

where the underline indicates a vector in the transverse directions only. An additional time 
derivative of (6) yields the following: 

 a0
0vv 2 ⋅⎟

⎠
⎞⎜

⎝
⎛
−+−= ω

ωω&&  (7) 

The general solution of (6-7) is: 

 
( )

( )⎩
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+−++++
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)cos(1)/a()sin()/a()sin(v

v
yxo

yxo

ϕωωϕωωϕω
ϕωωϕωωϕω

ttt
ttt

 (8) 

Let us denote ϕωφ += tt)( . It is to verify that the solution (8) satisfies the equations of motion: 
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Let us now compute the solution at an advanced time dtt + . From (8) we have: 

 
( )

( )⎩
⎨
⎧

+++−−+
+−++++

=+ )sin()/a()cos(1)/a()cos(v
)cos(1)/a()sin()/a()sin(v

)(v
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Expanding the trigonometric functions we find: 

 
[ ] [ ]
[ ] [ ] a1

11)(v)()/a(/av/av
)/a(/av/av

)(v
xxyyx

yxyyx ⋅⎥⎦
⎤

⎢⎣
⎡

−
−+⋅=

⎩
⎨
⎧

−+⋅+−⋅−
++⋅+−⋅
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where dtωδ ≡  and )(dtΩ  is the counter-rotation matrix around the magnetic field: 

 ⎟
⎠
⎞

⎜
⎝
⎛
−= )cos()sin(

)sin()cos()( δδ
δδdtΩ  (12) 

The last matrix in (11) can also be written in terms of this rotation matrix. Let us define: 

 ⎟
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⎝
⎛
−= 01

10ωσ     and  ⎟
⎠
⎞

⎜
⎝
⎛ −= −−
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101ω1σ  (13) 

then (11) becomes: 
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1)(v)()(v ⋅⋅⎥⎦

⎤
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⎡
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δδ
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In a compact form:  
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 [ ] [ ]a)(v)()(v)(vv ⋅+⋅−=−Δ+=Δ −1σ1Ω tdtttt  (15) 
One should now consider the case of vanishing magnetic field. The matrix 1σ −  on the RHS of 
(15) is singular when 0=B . However, it can be combined with the term in brackets as follows: 

 [ ] dtdt ⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

=⋅− −

444 3444 21
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δ
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δ
δ

δ
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δ
δ

sin1cos

cos1sin

)(  (16) 

The matrix 1Δ  is regular, since: 

 ⎟
⎠
⎞⎜

⎝
⎛→ 10

01
1Δ      when  0→ω  (17) 

One can expand (15) to the next order in tΔ=ωδ , leading to: 

 
⎥
⎥
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⎢
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−++

=Δ
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v
dtdtdtdt
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ωω
ωω

 (18) 

We see that the second-order accurate ( )( 2dto ) solution is obtained by rotating a half-step 
advanced solution, as expected. We can also verify that this solution is identical to the Boris 
algorithm, by comparing (18) with (A.23b) of Appendix A. 

The opposite limit of large time steps compared to the gyro-motion, i.e. ∞→dtω , is also of 
principal interest. In that case, the trigonometric functions oscillate rapidly, but the trajectory 
remains bound. One can perform an averaging over a large number of gyro-motions, and 
eliminate all terms proportional to these functions ( 0sincos >=>=<< ). The remainder is: 

 a0/1
/10)(v ⋅⎟

⎠
⎞⎜

⎝
⎛
−>=Δ+< ω

ωtt  (19) 

which is independent of the time step tΔ . This is a constant velocity, which can be easily 
recognized as the BE

rr
×  drift velocity, since (19) is equivalent to: 

 2
x

y

/
/v

BBE
BE BE×

=
⎩
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⎧
−

>=<  (20) 

Therefore, the formulation (15) automatically recovers the drift motion of the guiding center 
when the gyro-motion is not resolved – with a randomized rotation around the magnetic field. 

Let us now look at the exact solution for the particle position. From (8), we obtain: 

 02
o x
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The expression at a later time dtt +  can be expressed as function of the original phase )(tφ  and 
the phase difference dtd ωδφ =≡  by: 
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One recognizes again the rotation matrix (12) in that expression, which allows us to write the 
displacement as: 
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However, from (15) one can also recognize the following expression: 
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Inserting (24) into (23), we finally obtain: 
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For the displacement along the magnetic field, the exact solution is of course: 
 tttttt ΔΔ+≡Δ+Δ=Δ )(va)(vx 2

1
||

2
||2

1
||||  (26) 

It would appear that the transverse displacement (25) has a singular behavior at vanishing 
magnetic field strength, due to the 1−ω  factor. However, a simple Taylor expansion can confirm 
that this is not the case: when 0→ω  one can use (18) into (25) to verify that, as expected: 
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The expression (25) is therefore valid for all non-zero values of the magnetic field. We can, as 
before, regularize this expression in the case of 0=ω ; after some simple algebra, we obtain: 
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We have recognized the first matrix (16), and defined a second regularized matrix 2Δ . Both are 
finite when 0→ω , since in that case (defining also the following CS ,  coefficients): 
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Therefore, the procedure outlined above is applicable in all cases of magnetic field values. 
 
3.  General Algorithm 

One can construct two types of algorithms. The first case is valid only for εδ > , i.e. does not 
require regularization, and is governed by the following operations: 

(1) Transform the velocity, position and acceleration vectors from the original reference 
frame into the rotated frame with the ẑ  axis aligned with the magnetic field. 

(2) Compute the changes to the transformed velocity vector, separating the transverse and 
parallel components: 
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(3) Compute the changes to the transformed position, separating the transverse and parallel 

components: 
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 2
||2

1
|||| a)(vx ttt Δ+Δ=Δ  (31b) 

(4) Transform the changes back into the original frame and add to the initial values. 

In the second case, the regularized matrices are used so that the algorithm remains valid for all 
cases of field values, including εδ < . Combining transverse and parallel components*, we can 
express the velocity change as: 
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The transformation steps (1) and (4) remain the same.  

It would appear that the proposed scheme is very expensive, since it requires the evaluation of 
several matrices. However, in the case of constant fields studied so far, these matrices can be 
determined once the fields and time step are known. The transformation matrices (4) can be 
incorporated into the definition of the regularized push matrices 210 Δ,Δ,Δ , leading to: 
 RΔRD k

1
k

ˆˆ ⋅⋅= − ,  3,2,1=k  (33) 
The changes can then be computed directly in the initial (non-rotated) frame: 

 E
m

rrr
⋅

Δ
+⋅=Δ 10 DD

tq
vv  (34a) 

and E
m

rrr
⋅

Δ
+Δ⋅=Δ 21 DD

2tq
tvr  (34b) 

 
4.  Computational Tests 

The first test conducted concerns the movement of a single particle (a positron) in static fields; 
the initial velocity is null, the electric field is 1 kV/m in the positive ŷ -direction and the magnetic 
field is 1 Tesla in the positive ẑ -direction. Under such initial conditions the particle executes a 
cycloidic movement of height equal to cLrh ω/v22 D== , where BE /vD =  is the drift velocity 
in the x̂ -direction. The motion is computed for three cases of constant time steps, being 
respectively cω/1.0 , cω/1  and cω/10 . Since the Boris algorithm requires the velocity at a prior 
half-time step, that initial value ( )2/1(−vr ) is computed from the exact solution. The trajectories for 
the exact solution, the Boris algorithm, and the regularized algorithm of eqs. (34) are shown in 
Figure 4. All methods are in very good agreement for small time step. For ct ω/1=Δ , the Boris 
algorithm starts to show some noticeable deviations from the exact solution; first, the Larmor 
radius, or height of the cycloid, is noticeably larger; second, the effective gyro-frequency is 
somewhat lower, leading to a growing de-phasing with the exact solution. At larger time steps 
(Figure 4c), the solution from the Boris algorithm is in error by close to an order of magnitude†. 
By contrast, the current algorithm provides a solution that is in perfect agreement with the exact 
solution, both in amplitude and phase.  

                                                 
* The underline is eliminated, since these are now 3-dimensional variables. 
† Note that the magnitude of this error is bounded, i.e. does not grow in time, a result of symplecticity. 
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Figure 4: Particle trajectory for three time steps; exact solution is compared to the results 
from the Boris algorithm and the current scheme. 
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It should also be pointed out that, despite the obvious error in transverse position and rotation 
frequency present in the Boris algorithm, the drifting motion in the x̂ -direction is accurately 
maintained. This is evident in Figure 5, where the difference between the actual position and the 
expected position from the constant drift is plotted versus time. The natural oscillations are due to 
the cycloid motion itself and of amplitude equal to the Larmor radius; only at the largest time step 
does the Boris algorithm deviates from the expected behavior. The current method (Figure 5b) 
yields the correct drift dynamics at all time steps. 
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One can now examine the impact of the errors on conservation properties, i.e. kinetic, potential 
and total energies. In this simple test case with an imposed external field, the potential energy per 
mass is simply y)/( ⋅= mqEe pot , where y  is the particle position along the ŷ -axis. It is 
important to point out that for the Boris algorithm, the kinetic and potential energies are evaluated 
at different times, i.e.: 
 )()( y)/( nn

pot mqEe =     and     ( ) 2/v
2)2/1()2/1( −− = nn

kine  (35) 

Therefore to evaluate the total energy at a specific time (e.g. )(nt ), one must interpolate one of the 
variables to that time level. Both kinetic and potential energies are shown as function of time for 
the Boris algorithm in Figure 6. 

Figure 5: X-position versus time, normalized to theoretical position of guiding center (VDt). 
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It can be seen that there is a rapid degradation of the energy conservation as the time step is 
increased to values of the same order or beyond the gyro-period; the error in amplitude of the 

Figure 6: Kinetic and potential energy versus distance for Boris algorithm – all cases of time 
steps. Dashed horizontal lines indicate theoretical limits of variation. 
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particle trajectory leads to errors in potential energy which become severe for large time steps. 
Since the current method is in perfect agreement with the exact solution at all time steps, the 
energy is perfectly conserved in that case (see Figure 7). 
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To evaluate the total energy, one must 
account for the dephasing of the 
velocity and position in the case of the 
Boris algorithm, as mentioned 
previously. This dephasing can be 
clearly seen when plotting both 
energies versus a single time coordinate 
( )(nt ) in Figure 8. The shift of the two 
curves is a result of the leap-frog 
algorithm. One can correct for this by 
plotting the kinetic energy versus the 
proper time of evaluation, i.e. the set 

}{ )2/1( +nt , as done in Figure 7; this shifts 
all the points to the left, as indicated by 
the black arrows of Figure 8. The total 
energy can be evaluated at the set of 
times }{ )(nt  by adding the potential 
energy at that time with the average of 
the kinetic energies at times ),( )2/1()2/1( +− nn tt . This interpolation is accurate as long as the time 
step is sufficiently small, i.e. such a linear approximation of the trajectory between the two times 
is reasonable; however, it can lead to severe errors for large time steps. This phase error of the 
Boris scheme is in addition to the amplitude error (effective Larmor radius) already observed, for 
example, in Figure 6. The average errors on total energy and position can be obtained for various 
values of the time step and magnetic field. The error on the total energy can be defined here as 

Figure 7: Kinetic and potential energy versus distance for current method – all time steps shown.  

2.1x106

2.0

1.9

1.8

1.7

1.6

1.5

E k
in

, E
po

t

130128126124122120

time  [ps]
Figure 8: Kinetic (red) and potential (blue) energies 
versus a single time coordinate.
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0/)()( EEEEerr intottot −= , where inE  is the initial total energy (at 0=t ) and 0E  is a 
representative energy scale; here, 2/v2

0 DE = , where Dv  is the drift velocity. Similarly for the 

position, the error is defined as 0/)( XxxXerr exact
αα −Σ=

r
; all components of the position are 

contributing, and 0X  is a representative length scale – in the case of cold particles here, the 
Larmor radius, i.e. half the height of the cycloid motion. Both errors are shown in Figure 9 for the 
two schemes. 
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Figure 9: Error on energy (a) and position (b) as function of time step for several values of the 
magnetic field, for the Boris and our algorithms. 
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Note the change of scale between the left (Boris algorithm) and right axis (current algorithm); 
clearly, the present scheme is more accurate by several orders of magnitude.  
 
5.  Conclusions 

We have successfully implemented and tested a new particle pusher algorithm that can effectively 
be used for large time steps, much larger than the gyroperiod; the method is based on the exact 
solution of the equations of motion, but does not require tracking the phase of the particle motion 
around the field line. The method can be applied to arbitrarily large time steps and yields exact 
(down to machine accuracy) conservation of energy and exact position. The method is currently 
restricted to the non-relativistic case, and to uniform fields. Extension to the relativistic regime 
would be very difficult, since there is no longer an analytical solution; extension to the non-
uniform (magnetic) field does not present a-priori any difficulties, but this must be verified.  
 
It would a-priori appear that the algorithm is computationally expensive, but this is not 
necessarily the case. The push matrices (eqs. 32) need to be computed only once for each time-
step, but are the same for each particle in this case of uniform field. Thus, the method would be 
efficient when computing a large number of particles in such configurations, e.g. Penning traps. 
In the case of weakly non-uniform fields, one can also attempt a perturbation expansion, such that 
the computationally expensive push matrices (involving trigonometric function evaluations) are 
again computed once in each computational cell, while each particle is transported according to a 
hybrid scheme involving the one described here, and a rapid scheme such as the Boris algorithm 
for the small perturbation B

r
δ  or a similar procedure that does not involve time staggering. This 

can be investigated in the future. 
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Appendix A: Boris Algorithm 
 
The Boris algorithm is defined by the following steps, from the velocity at 2/tt Δ−  and the 
fields at t : 

1. )(
2

)2/( tt
m
qtt Evv Δ

+Δ−=−  (A.1) 

2. )(
2

' tt
m
q Bvvv ×
Δ

+= −−  (A.2) 

3. )(

2
1

2 '
2 t

t
m
q

t
m
q

Bv
B

vv ×

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

Δ

+= −+  (A.3) 

4. )(
2

)2/( tt
m
qtt Evv Δ

+=Δ+ +  (A.4) 

The position is advanced by the additional step: 
5. )2/()()( tttttt Δ+Δ+=Δ+ vrr  (A.5) 

 
The algorithm could also be written a different way. Let us define the following vector: 

 bβ ˆ
2

tcΔ=
ω

 (A.6) 

where B
m
q

c =ω   is the cyclotron frequency (unsigned) and  BBb /ˆ =  is the unit vector along 

the magnetic field. Steps 2 and 3 can be combined into the form: 

 −−−+ ××
+

+×
+

−= vββvβvv 22 1
2

1
2

ββ
 (A.7) 

(with β≡β ). The equivalent matrix form is: 
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 (A.8) 

or equivalently: 
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1
1  (A.9) 

 
The origin of the Boris algorithm is made clear by the following. Consider the rotation step as 
follows: 

 )()(
2

tt
m
q Bvvvvv ×+
Δ

=−= −−+ δδ  (A.10) 

leading to: 

 −−++ ×
Δ

−=×
Δ

+ vBvvBv
22
t

m
qt

m
q  (A.11) 

or in matrix form: 
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 (A.12) 

The matrix +N  on the LHS can be inverted to yield: 
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The product −
−
+ ⋅NN 1  is: 
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which can be decomposed into the form: 
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We see that this is equivalent to (A.9), and therefore the steps 2 and 3 of the Boris algorithm are 
equivalent to a time-centered scheme for the gyro-motion (A.10). 
 
Note that the Boris algorithm is operator-splitting the electric acceleration from the magnetic 
rotation. We could also look into a complete operator definition without this splitting, by 
considering the full time-centered algorithm: 

 nnnnnn
t

m
qt

m
q BvvEvvv ×+

Δ
+⋅Δ=−= −+−+ )(

2 2/12/12/12/1δ  (A.16) 

which becomes 
 2/12/1 −−++ ⋅+Δ=⋅ nnn t vNavN  (A.17) 

where nn mq Ea ⋅= )/( . The solution is already expressed using the matrices of (A.13) and (A.15). 
To simplify the notation, let us define the following: 
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then the solution is expressed as: 
 ( ) 2/1

11
2/1 )( −−

−
+

−
++ ⋅+Δ⋅= nnn t vNNaNv  (A.19) 

with: 
 210

1 MMMN ++=−
+  (A.20a) 

and 210
21 22)1( MMMNN ++−=−

−
+ β  (A.20b) 

 
In the case where the magnetic field is aligned along the ẑ -axis, considerable simplification 
occurs. We can easily see that (A.9) leads to the following relations for the parallel and transverse 
components respectively: 
 −+ ≡ |||| vv  (A.21a) 
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where tcΔ=ωδ . This leads to: 
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or, keeping terms of order 2δ  only: 
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